Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0385520210340010023
Analytical Science & Technology
2021 Volume.34 No. 1 p.23 ~ p.35
Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample
Lee In-Ho

Byun Chang-Kyu
Eum Chul-Hun
Kim Tae-Wook
Lee Sam-Keun
Abstract
In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven.
After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ¡¾ 1) ¡¿ 10?2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ¡¾ 2 %, reproducibility was 5 ¡¾ 2 %, and the detection limit was 0.01 ng L?1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 ¥ìL of 100 ¥ìg mL?1) and butylated hydroxytoluene (BHT, 2 ¥ìL of 500 ¥ìg mL?1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ¡¾ 1) ¡¿ 10?2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.
KEYWORD
large volatile sample, vacuum chamber, residual VOCs, decompression, GC-MS
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)